Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Computer Methods in Applied Mechanics and Engineering ; 402:1.0, 2022.
Article in English | ProQuest Central | ID: covidwho-2232576

ABSTRACT

Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics Informed Neural Networks seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they self-adaptively learn the weighting between data and physics. They can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these different approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems.

2.
Biophys J ; 121(18): 3309-3319, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2003901

ABSTRACT

Microthrombi and circulating cell clusters are common microscopic findings in patients with coronavirus disease 2019 (COVID-19) at different stages in the disease course, implying that they may function as the primary drivers in disease progression. Inspired by a recent flow imaging cytometry study of the blood samples from patients with COVID-19, we perform computational simulations to investigate the dynamics of different types of circulating cell clusters, namely white blood cell (WBC) clusters, platelet clusters, and red blood cell clusters, over a range of shear flows and quantify their impact on the viscosity of the blood. Our simulation results indicate that the increased level of fibrinogen in patients with COVID-19 can promote the formation of red blood cell clusters at relatively low shear rates, thereby elevating the blood viscosity, a mechanism that also leads to an increase in viscosity in other blood diseases, such as sickle cell disease and type 2 diabetes mellitus. We further discover that the presence of WBC clusters could also aggravate the abnormalities of local blood rheology. In particular, the extent of elevation of the local blood viscosity is enlarged as the size of the WBC clusters grows. On the other hand, the impact of platelet clusters on the local rheology is found to be negligible, which is likely due to the smaller size of the platelets. The difference in the impact of WBC and platelet clusters on local hemorheology provides a compelling explanation for the clinical finding that the number of WBC clusters is significantly correlated with thrombotic events in COVID-19 whereas platelet clusters are not. Overall, our study demonstrates that our computational models based on dissipative particle dynamics can serve as a powerful tool to conduct quantitative investigation of the mechanism causing the pathological alterations of hemorheology and explore their connections to the clinical manifestations in COVID-19.


Subject(s)
COVID-19 , Blood Viscosity , COVID-19/blood , Fibrinogen/metabolism , Hemorheology , Humans
3.
Chaos ; 32(7): 071101, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1972752

ABSTRACT

We study the dynamic evolution of COVID-19 caused by the Omicron variant via a fractional susceptible-exposed-infected-removed (SEIR) model. Preliminary data suggest that the symptoms of Omicron infection are not prominent and the transmission is, therefore, more concealed, which causes a relatively slow increase in the detected cases of the newly infected at the beginning of the pandemic. To characterize the specific dynamics, the Caputo-Hadamard fractional derivative is adopted to refine the classical SEIR model. Based on the reported data, we infer the fractional order and time-dependent parameters as well as unobserved dynamics of the fractional SEIR model via fractional physics-informed neural networks. Then, we make short-time predictions using the learned fractional SEIR model.


Subject(s)
COVID-19 , Disease Susceptibility , Humans , Pandemics , SARS-CoV-2
4.
Computer Methods in Applied Mechanics and Engineering ; : 115346, 2022.
Article in English | ScienceDirect | ID: covidwho-1936182

ABSTRACT

Understanding real-world dynamical phenomena remains a challenging task. Across various scientific disciplines, machine learning has advanced as the go-to technology to analyze nonlinear dynamical systems, identify patterns in big data, and make decision around them. Neural networks are now consistently used as universal function approximators for data with underlying mechanisms that are incompletely understood or exceedingly complex. However, neural networks alone ignore the fundamental laws of physics and often fail to make plausible predictions. Here we integrate data, physics, and uncertainties by combining neural networks, physics informed modeling, and Bayesian inference to improve the predictive potential of traditional neural network models. We embed the physical model of a damped harmonic oscillator into a fully-connected feed-forward neural network to explore a simple and illustrative model system, the outbreak dynamics of COVID-19. Our Physics Informed Neural Networks seamlessly integrate data and physics, robustly solve forward and inverse problems, and perform well for both interpolation and extrapolation, even for a small amount of noisy and incomplete data. At only minor additional cost, they self-adaptively learn the weighting between data and physics. They can serve as priors in a Bayesian Inference, and provide credible intervals for uncertainty quantification. Our study reveals the inherent advantages and disadvantages of Neural Networks, Bayesian Inference, and a combination of both and provides valuable guidelines for model selection. While we have only demonstrated these different approaches for the simple model problem of a seasonal endemic infectious disease, we anticipate that the underlying concepts and trends generalize to more complex disease conditions and, more broadly, to a wide variety of nonlinear dynamical systems. Our source code and examples are available at https://github.com/LivingMatterLab/xPINNs.

5.
PLoS Comput Biol ; 18(3): e1009892, 2022 03.
Article in English | MEDLINE | ID: covidwho-1731577

ABSTRACT

Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients' fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis.


Subject(s)
COVID-19/complications , Microvessels/physiopathology , Thrombosis/physiopathology , Thrombosis/virology , Anticoagulants , Blood Coagulation , Computational Biology , Humans , Models, Biological , SARS-CoV-2
6.
PLoS Comput Biol ; 17(9): e1009334, 2021 09.
Article in English | MEDLINE | ID: covidwho-1398921

ABSTRACT

Epidemiological models can provide the dynamic evolution of a pandemic but they are based on many assumptions and parameters that have to be adjusted over the time the pandemic lasts. However, often the available data are not sufficient to identify the model parameters and hence infer the unobserved dynamics. Here, we develop a general framework for building a trustworthy data-driven epidemiological model, consisting of a workflow that integrates data acquisition and event timeline, model development, identifiability analysis, sensitivity analysis, model calibration, model robustness analysis, and projection with uncertainties in different scenarios. In particular, we apply this framework to propose a modified susceptible-exposed-infectious-recovered (SEIR) model, including new compartments and model vaccination in order to project the transmission dynamics of COVID-19 in New York City (NYC). We find that we can uniquely estimate the model parameters and accurately project the daily new infection cases, hospitalizations, and deaths, in agreement with the available data from NYC's government's website. In addition, we employ the calibrated data-driven model to study the effects of vaccination and timing of reopening indoor dining in NYC.


Subject(s)
COVID-19 , Disease Outbreaks/statistics & numerical data , Models, Statistical , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Computational Biology , Humans , New York City/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL